PHASE EQUILIBRIA IN THE SYSTEM La₂O₃-Na₂O-P₂O₅ The partial system La₂O₃-Na₄La₂P₄O₁₅-LaPO₄

J. Kropiwnicka

DEPARTMENT OF INORGANIC CHEMISTRY, ACADEMY OF ECONOMICS 53345 WROCLAW, POLAND*

(Received July 25, 1989)

In the ternary system La₂O₃-P₂O₅-Na₂O the partial system La₂O₃-Na₄La₂P₄O₁₅-LaPO₄ has been examined by the thermal, dilatometric X-ray and microscopic analyses and its phase diagram provided. The lanthanum oxyphosphate La₃PO₇ melts incongruently at the 1590°C temperature and crystallizes in a monoclinic system a = 11.20 Å, b = 11.94 Å, c = 7.01 Å, $\gamma = 93.79$ and V = 936.97 Å³.

The purpose of present paper is to determine the phase diagram of the partial system La₂O₃-Na₄La₂P₄O₁₅-LaPO₄. As yet this system has not been known. It is limited from three sides by the following binary system: La₂O₃-LaPO₄-; La₂O₃-Na₄La₂P₄O₁₅; LaPO₄-Na₄La₂P₄O₁₅. The oxyphosphate with a formula La₃PO₇ for the first time has been obtained by Serra J. J. [1], in a solid state reaction from NH₄H₂PO₄ and La₂O₃ at 1180°, and by chemical decomposition of the orthophosphate LaPO₄ at a high temperature in an atmospheric pressure conditions [2]. Serra *et al.* [1] reported that the structures of La₃PO₇ and La₇P₃O₁₈ are monoclinic and La₇P₃O₁₈ exists in low - and high - temperature forms, transforming reversibley at 1650°. Kizilyalli and Welch made La₃PO₇ by solid state reaction of LaPO₄ with Na₂CO₃ at 700° to 900° [3]. Lanthanum oxyphosphate La₃PO₇ was found by quenching studies to have a slogish inversion at 935° [4]. The oxyphosphate La₃PO₇ melts incongruently at 1590° temperature [5, 6].

*Present address: Enterprise of the Cooling Industry, Wroclaw, Malopanewska 6, Poland

John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest

Experimental

The following initial materials were used for the synthesis of lanthanum phosphates and sodium - lanthanum phosphates: lanthanum oxide - 99.99 % (USSR), monobasic ammonium phosphate NH₄H₂PO₄ analytical grade (POCH), monobasic sodium phosphate NaH₂PO₄.H₂O analytical grade (POCH). The samples of ternary system La₂O₃-Na₄La₂P₄O₁₅-LaPO₄ were synthetized in the solid phase by sintering the mixtures of initial components at 600° -1200° for 6-8 hours. The oxyphosphate La₃PO₇ was obtained in a solid state reaction from a new compound NH₄LaP₄O₁₂ [7], by the heating at the high - temperature NH₄LaP₄O₁₂, and from NH₄H₂PO₄ (anal. grade), La₂O₃ 99.99 % (USSR) by the following reaction:

 $NH_4LaP_4O_{12} + NH_4H_2PO_4 + La_2O_3 = La_3PO_7 + 2NH_3 + 2H_2O + 2P_2O_5$

The reaction proceeds in two stages:

1. at 400° temperature for 6 hours

2. at 1400° temperature for 8 hours

in a platinum crucible. Synthesis of sodium - lanthanum phosphates: Na4La2P4O15 and Na3La2(PO4)3 were carried out in the manner given in [8].

In thermal studies during a heating the Paulik-Paulik-Erdey MOM 3427 derivatograph was used with photographic recording over the temperature range from 25 to 1300°. Operating conditions were used as follows: sensitivity TG - 500 mg, DTA-1/5, DTG 1/10 heating rate 10 deg/min. Al₂O₃ was used as a standard material. High-temperature X-ray GPWT-1500 attachment installed in a GUR-5 goniometer of a DRON-2.0 diffractometer [9].

Results and discussion

Side system LaPO4-Na4La2P4O15

The unknown side system LaPO₄-Na₄La₂P₄O₁₅ limiting the partial system La₂O₃-Na₄La₂P₄O₁₅-LaPO₄ from one side, was studied by the methods of thermal analyses of heating and cooling the previously melted samples as well as by microscopic and X-ray analyses over the composition range from 20 to 100 weight % of Na₄La₂P₄O₁₅.

Figure 1 presents the phase diagram of the discussed binary system. The initial phosphates form a simple eutectic system. The e19 eutectic appears at

Fig. 1 Phase diagram of LaPO4 - Na4La2P4O15 system. o - thermal analysis, • - optical

50 weight % of LaPO₄ and 50 weight % of Na₄La₂P₄O₁₅ and at temperature 885°. Polymorphic transitions α/β - at 740° and δ/ϵ - Na₄La₂P₄O₁₅ at 400° give thermal effects merely in that part of the system which is richer in this phosphate. Whereas thermal effects due to the transitions β/γ - at 610° and γ/δ , occurring at temperatures interval 575-500°, give distinct thermal effects over the entire composition being studied. The samples from the discussed system are very hygroscopic. Their microscopic studies were made difficult.

982

Partial ternary system La₂O₃-Na₄La₂P₄O₁₅-LaPO₄

Figure 2 presents the phase diagram of partial ternary system La₂O₃-Na₄La₂P₄O₁₅-LaPO₄ with solidifications isotherms. Three hitherto unknown binary sections: $1/La_5PO_{10}$ -Na₃La₃(PO₄)₃, $2/La_3PO_7$ -Na₃La₂(PO₄)₃ and $3/LaPO_4$ -Na₃La₂(PO₄)₃ occur in the composition range under investigation. Figure 3 presents the phase diagram of binary section La₅PO₁₀-Na₃La₂(PO₄)₃ obtained by thermal analysis of cooling and heating, dilatometric and X-ray analyses.

Fig. 3 Phase diagram of LasPO10 - Na3La2(PO4)3 system. 0 - thermal analysis, • - optical

This is a simple eutectic system. The eutectic temperature is 1320° , composition e₂₁: 70 weight % of Na₃La₂(PO₄)₃, 30 weight % of La₅PO₁₀.

Microphotograph of the sample of discussed binary system composed: 70 weight % of La₅PO₁₀ and 30 weight % of Na₃La₂(PO₄)₃ is presented in Fig. 4. The primarily separated crystals La₅PO₁₀ and the eutectic (dark fields) are seen.

Fig. 4 Composition: 70% LasPO₁₀ 30% Na₃La₂(PO₄)₃. Preliminary: LasPO₁₀ (white crystals). Secondarily: eutectic (dark fields)

The samples for phase studies were obtained by sintering the initial components at 1000° and further by melting in a furnace with the tungsten winding. The liquidus curve was determined by optical pyrometer. The dependences in solid phase were based on thermal analysis of cooling the previously melted samples.

Polymorphic transitions α/β - La₅PO₁₀ at 1180° gives separate thermal effects over the composition range from 60 to 100 weight % of La₅PO₁₀. In the remaining range of compositions these effects coincide with these coming from high-temperature transitions α/β - Na₃La₂(PO₄)₃ at 1050° giving a strong common thermal effect over the entire composition range. The transitions β/γ -La₅PO₁₀ at 860° and β/γ -Na₃La₂(PO₄)₃ at 900° give a strong common thermal effect. The transition γ/δ -La₅PO₁₀ at 700° is characterized by a strong thermal effects over the entire composition range. The transition δ/ϵ -La₅PO₁₀ at 80° was observed in dilatometric studies. The samples melted from system La₅PO₁₀-Na₃La₂(PO₄)₃ are not moisture resistant due to the hygroscopicity of the initial phosphates.

984

Fig. 5 Phase diagram of La3PO7 - Na3La2(PO4)3 system. o - thermal analysis, • - optical

Figure 5 presents the phase diagram of binary section La₃PO₇-Na₃La₂(PO₄)₃. The system was studied by thermal analysis of heating the previously melted samples as well as by microscopic and X-ray analyses. The samples primarily synthetized from the initial components by sintering at 1000° were melted in a furnace with the tungsten winding. The liquidus curve was determined by optical pyrometer. The section La₃PO₇-Na₃La₂(PO₄)₃ though being limited by pure compounds does not possess all the features of a binary system. In its upper part has a ternary character. Above 1300° there occur the following four phases: liquid C, α -La₅PO₁₀, La₃PO₇ and α -Na₃La₂(PO₄)₃. As a result of the peritectic reaction: C + La₅PO₁₀ →La₃PO₇ the liquid C and the compound La₅PO₁₀ become used up to yield La₃PO₇ crystals. Below 1300° there exist only two phases: La₃PO₇ and Na₃La₂(PO₄)₃. Polymorphic transitions α/β -Na₃La₂(PO₄)₃ at

1050° and β/γ at 900° give large thermal effect observed on heating curves over the entire binary system.

Microscopic analyses of microsections is difficult because of the hydroscopicity of initial phosphates.

The binary section LaPO4-Na₃La₂(PO₄)₃ was studied over the composition range from 40 to 100 weight % of Na₃La₂(PO₄)₃ and over the temperature range from 20° to 1780° , to this end thermal analysis of heating and cooling the melted samples and X-ray and microscopic methods were used. The samples preliminary synthetized from the initial components by sintering at 1000° were melted in furnace with the tungsten winding. The liquidus curve was determined by optical pyrometer. Figure 6 presents the phase diagram of the discussed section.

Fig. 6 Phase diagram of LaPO4 - Na3La2(PO4)3 system. o - thermal analysis, • - optical

It is a simple eutectic system of eutectic composition e_{20} : 68 weight % of Na₃La₂(PO₄)₃ and 32 weight % of LaPO₄ and the temperature at 1520°. Polymorphic transitions α/β at 1050 ° and β/γ -Na₃La₂(PO₄)₃ at 900° give single distinct thermal effect over the entire composition range being examined.

The discussed binary sections divide the studied partial system La₂O₃-Na₄La₂P₄O₁₅-LaPO₄ into the next four partial ternary systems: 1/ La₂O₃-Na₃La₂(PO₄)₃-La₅PO₁₀, 2/ La₅PO₁₀-Na₃La₂(PO₄)₃-La₃PO₇, 3/La₃PO₇-Na₃La₂(PO₄)₃-LaPO₄ and 4/ LaPO₄-Na₃La₂(PO₄)₃-Na₄La₂P₄O₁₅. Within the studied range of compositions there occur four binary compounds (La₂O₃, La₅PO₁₀, La₃PO₇, LaPO₄) as well as two ternary compounds (Na₃La₂(PO₄)₃, Na₄La₂P₄O₁₅) which crystallize from the liquid phase.

In the binary system La₂O₃-LaPO₄ at the temperature of 1590° there occurs a peritectic reaction: $C + \alpha$ -La₅PO₁₀ = La₃PO₇ which yields lanthanum oxyphosphate La₃PO₇. Hence during solidification of the samples corresponding to the field points LasPO10-La3PO7-P2-Na3La2(PO4)3 (triple peritectic quadrangle) we deal with triple peritectic reaction: C_{P_2} + $La_5PO_{10} = La_3PO_7 + Na_3La_2(PO_4)_3$, where C_{P_2} means liquid of composition corresponding to P2. The above reactions proceeds at constant temperature of 1300°. At this temperature in melted samples of La3PO7 -Na₃La₂(PO₄)₃ system there occur the equivalent amounts of the liquid of composition P₂ and α -La₅PO₁₀ crystals. In the melted samples lying inside the triangle La₅PO₁₀-Na₃La₂(PO₄)₃-La₃PO₇ during peritectic reaction the liquid P₂ is depleted more quickly so that besides the formed La₃PO₇ and Na₃La₂(PO₄)₃ crystals there will remain an excess of La₅PO₁₀ crystals. In the alloys lying inside the triangle La₃PO₇ - Na₃La₂(PO₄)₃ - P₂ peritectic reaction results in an excess of liquid CP2 thus the solidification process is not finished in the peritectic temperature of 1300°. Further course of crystallization consists in crystallizing binary eutectic La3PO7 + Na₃La₂(PO₄)₃] along the line P₂E₇ at varying temperatures and finally the point E7 is reached starting crystallizing ternary eutectic {La3PO7 + Na₃La₂(PO₄)₃ + LaPO₄ at constant temperature 1250° .

Results and discussion of the diffraction data

The lanthanum oxyphosphate La₃PO₇ melts incongruently as a result peritectic reaction:

 $C + \alpha$ -LasPO₁₀ \rightarrow LasPO₇

at the 1590° temperature and forms from a liquid phase C and a high temperature phase of the oxyphosphate α -LasPO₁₀. The low-temperature phase of ε -LasPO₁₀ occurs in the monoclinic system and lattice parameters are following:

 $a = 13.11 \text{ Å}; b = 13.58 \text{ Å}; c = 8.08 \text{ Å}; \gamma = 113.9; V = 1315.40 \text{ Å}^3$ [5, 6]

Powder diffraction data for the homogeneous phase La₃PO₇ are provided in Table 1.

$d_{\rm exp} x 10^{-1} {\rm nm}$	$d_{\rm calx}10^{-1}\rm nm$	hkl	
6.9757	7.0148	001	
4.1556	4.1362	121	
4.0402	4.0373	211	
3.9637	3.9740	030	
3.8251	3.8251	130	
3.6333	3.6255	310	
3.4624	3.4577	031	
3.3647	3.3648	012	
3.3558	3.3583	131	
3.1280	3.1257	311	
3.0217	3.0229	022	
-	3.0192	221	
2.9786	2.9805	040	
2.9467	2.9431	122	
2.5637	2.5606	240	
2.5501	2.5540	302	
2.4617	2.4649	331	
2.3383	2.3382	003	
-	2.3403	232	
2.3094	2.3100	322	
2.2540	2.2533	113	
· •	2.2559	340	
2.2472	2.2479	142	
-	2.2474	250	
2.2013	2.2042	142	
2.0037	2.0060	530	
1.9256	1.9240	152	
1.8590	1.8601	323	
-	1.8596	610	
1.8174	1.8127	620	

Table 1 Lattice parameters for the low-temperature phase La3PO7

$d_{exp} \times 10^{-1} nm$	$d_{calx}10^{-1}$ nm	hkl	
1.8131	1.8125	451	
1.7815	1.7836	352	
1.7461	1.7457	020	
1.7442	1.7467	361	
1.7419	1.7413	532	
1.7277	1.7266	243	
•	1.7288	062	
-	-	442	
1.7205	1.7206	114	
1.7187	1.7170	114	
1.7127	1.7120	550	
1.6878	1.6875	343	
1.6774	1.6770	214	
1.6626	1.6615	433	
-	1.6612	153	
-	1.6624	071	
1.6568	1.6550	452	
1.6541	1.6543	640	
	monoclinic system		

Table 1 continued

Powder data were obtained through use of the "Powder" program version IBM 360.

* * *

The author thanks Mrs. B. Lagódka for the technical assistance (thermogravimetric analyses). The thermal study was supported by grant CPBP.

References

1 J. J. Serra, J. Coutures and A. Rouanet, Proc Rare Earth Res. Conf. 12th, Vol. 2, 1976, p. 652.

- 2 J. J. Serra, J. Coutures and A. Rouanet, High Temp. High Press. 1 (1976) 337.
- 3 M. Kizilyally and A. J. E. Welch, Rare Earth Mod. Sci. Technol. 2 (1980) 59.
- 4 H. D. Park and E. R. Kreidler, J. Am. Cer. Soc. 1 (1984) 67.
- 5 J. Kropiwnicka, Thesis, November 1986, Wroclaw
- 6 J. Kropiwnicka, International Conference on Corrosion Control for the Offshore and Marine Constructions, 6-9 September, 1988, Xiamen (Amoy) China, Abstracts
- 7 J. Kropiwnicka, Announcement of the invention (6.07.1987), nr P 266677.
- 8 J. Kropiwnicka and T. Znamierowska, J. Solid State Chem. 73 (1988) 405.
- 9 J. Kropiwnicka, J. Thermal Anal., 34 (1988) 5.

Zusammenfassung — Mittels Thermo- und dilatometrischer Analyse, Röntgendiffraktionsuntersuchungen und Mikroskopie wurde das Teilsystem La₂O₃ - Na₄La₂P₄O₁₅ - LaPO4 des ternären Systemes La₂O₃ - P₂O₅ - Na₂O untersucht und ein Phasendiagramm entwickelt. Lanthanoxyphosphat La₃O₇ schmilzt inkongruent bei 1590°C und kristalliert in einem monoklinen System mit a = 11.20 Ä, b = 11.94 Ä, c = 7.01 Å, $\gamma = 93.79$ und V = 936.97 Å³.